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Abstract We extend previous work on a parameter multi-element “hp” certified
reduced basis method for elliptic equations to the case of parabolic equations. A
POD (in time) / Greedy (in parameter) sampling procedure is invoked both in the
partitioning of the parameter domain (“h”-refinement) and in the construction of
individual reduced basis approximation spaces for each parameter subdomain (“p”-
refinement). The critical new issue is proper balance between additional POD modes
and additional parameter values in the initial subdivision process. We present nu-
merical results to compare the computational cost of the new approach to the stan-
dard (“p”-type) reduced basis method.

1 Introduction

The reduced basis (RB) method is a model-order reduction framework for rapid
evaluation of functional outputs—such as surface temperatures or fluxes—for par-
tial differential equations which depend on an input parameter vector—such as geo-
metric factors or material properties. Given any parameter vector from a predefined
parameter domain, the field variable is approximated as a Galerkin-optimal linear
combination of accurately pre-computed “truth” finite element (FE) snapshots of the
solution at judiciously selected parameter values [2, 6]; assuming that the field de-
pends smoothly on the parameters, a RB approximation can be obtained with very
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few snapshots. Moreover, rigorous a posteriori upper bounds for the error in the
RB approximation with respect to the truth discretization can be developed [4, 9].
The RB equation formation, solution, and error estimation can be made very effi-
cient in the case of (perhaps approximate) “affine” parameter dependence through
an offline-online procedure [8, 9]; the method is computationally attractive in two
important engineering contexts—“real-time” and “many-query”.

For many problems, the field variable may be quite different in different regions
of the parameter domain, and hence a snapshot from one region may be of little value
in approximating the solution in another region: the RB space is thus in some sense
too large. In [3], an “hp” reduced basis method is introduced for linear elliptic equa-
tions: we adaptively subdivide the original parameter domain into smaller regions;
we then build individual RB approximation spaces spanned by snapshots restricted
to parameter vectors within each parameter subdomain. The RB approximation as-
sociated with any new parameter vector is then constructed as a linear (Galerkin)
combination of snapshots from the parameter subdomain in which the new parame-
ter vector resides. We thus expect the dimension of the (local) approximation space,
and thus the online computational cost, to be very low: every basis function con-
tributes significantly to the RB approximation. An alternative parameter-element
reduced-order “interpolation” approach is introduced in [1].

In this paper, we extend the work in [3] to linear parabolic equations through
a POD (in time) / Greedy (in parameter) sampling approach [5, 7]. This procedure
determines the partition of the parameter domain and the construction of the individ-
ual RB approximation spaces for each subdomain. The elliptic machinery from [3]
readily extends to the parabolic case since we only subdivide the parameter (and not
the temporal) domain. The critical new issue is proper balance between additional
POD modes and additional parameter values in the initial subdivision process.

Let Ω ⊂ R2, define L2(Ω) = {v :
∫

Ω
v2 dΩ < ∞}, H1(Ω) = {v : |∇v| ∈ L2(Ω)},

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, and introduce Xe ≡ Xe(Ω) such that H1

0 (Ω)⊆
Xe(Ω) ⊂ H1(Ω). The admissible parameter domain is D ⊂ RP. For each µ ∈ D ,
a(·, ·; µ) is a coercive and continuous bilinear form, b(·, ·; µ) is an L2(Ω) inner-
product, and f (·; µ) is a linear and bounded functional. We assume that a, b and f
admit affine expansions in at most Q terms in the sense that (for example) a(·, ·; µ) =

∑
Qa
q=1 Θ q(µ)aq(·, ·), where the Θ q are µ-dependent functions and the aq(·, ·) are µ-

independent bilinear forms, 1 ≤ q ≤ Qa(≤ Q); similar expansions in Qb ≤ Q and
Q f ≤ Q terms apply for b and f , respectively. Let µ̄ ∈ D be a fixed “reference
parameter”, and denote the symmetric part of a by as; we then define the X-inner-
product and X-norm by as(·, ·; µ̄) and ‖ · ‖X = (as(·, ·; µ̄))1/2, respectively.

We shall consider problems already discretized in time with the Euler Backward
(EB) method. Let [0,T ] be the time interval and introduce K+1 discrete time-values
tk = k∆ t, 0≤ k≤K, where ∆ t = T/K is the step-size. Our “exact” (hence e) problem
then reads: Given any µ ∈D , find ue(tk,µ) ∈ Xe, 1≤ k ≤ K, such that

1
∆ t

b
(
ue(tk; µ)−ue(tk−1; µ),v; µ

)
+a
(
ue(tk; µ),v; µ

)
= f (v; µ), ∀v ∈ Xe; (1)
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we assume zero initial conditions, ue(t0; µ) = 0. The output of interest can now be
evaluated as a functional of the field variable; in this paper however, for simplicity
of exposition, we consider no particular outputs of interest. Note that since our prob-
lem is linear time-invariant (LTI), we may also readily treat time-dependent (offline
unknown) control functions through an impulse approach [4].

The RB approximation will be built upon truth FE approximations to the “exact”
solution; let X ≡ XN (Ω) ⊂ Xe(Ω) denote a FE space of dimension N . We shall
assume that X is rich enough that the error between the truth and “exact” solutions
is in practice negligible. The truth discretization then reads: Given any µ ∈D , find
uk(µ)≡ u(tk; µ) ∈ X , 1≤ k ≤ K, such that

1
∆ t

b
(
uk(µ)−uk−1(µ),v; µ

)
+a
(
uk(µ),v; µ

)
= f (v; µ), ∀v ∈ X ; (2)

for initial condition u0(µ) = 0.
In Section 2, we formulate the “hp” RB method for parabolic problems, review

the POD/greedy sampling procedure from [5], and discuss the new parameter do-
main partitioning approach. In Section 3, we present numerical results and discuss
the computational cost of the new approach relative to the standard method.

2 The “hp” Reduced Basis Method

Reduced Basis Approximation Assume that D is divided into M parameter sub-
domains Vm ⊂D , 1≤m≤M. The partitioning procedure is briefly reviewed below;
see [3] for further details. Each subdomain has an associated set of nested RB ap-
proximation spaces XN,m ⊂ X , 1≤N ≤Nmax,m, (where dim(XN,m) = N) constructed
by the POD/Greedy sampling procedure. The parameter domain partitioning, the
POD/Greedy sampling, and the computation of the truth snapshots are all effected
in an offline computational stage; this stage may be rather expensive in terms of
computational cost, but is carried out only once as a pre-processing step.

Given any new µ ∈ D in the online stage, the algorithm first determines which
subdomain Vm∗ ⊂ D contains µ , and then selects the associated approximation
space XN,m∗ from a database of offline-constructed spaces. Once m∗ (1 ≤ m∗ ≤M)
is determined, the RB approximation reads: Given any N and any µ ∈ D , find
uk

N(µ)≡ uk
N̂,m∗

(µ) ∈ XN̂,m∗ , 1≤ k ≤ K, such that

1
∆ t

b(uk
N(µ)−uk−1

N (µ),v; µ)+a(uk
N(µ),v; µ) = f (v; µ), ∀v ∈ XN̂,m∗ , (3)

subject to u0
N(µ) = 0; here N̂ = min{N,Nmax,m∗}. The offline-online decoupling and

associated computational procedures are explained in detail in [8, 9]. In particular,
the online computational cost and storage requirements are independent of N —the
dimension of the truth FE space—thanks to our “affine” assumption on the parame-
ter dependence.
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A posteriori Error Estimation For each µ ∈ D , denote by αLB(µ) < α(µ) =
infv∈X a(v,v; µ)/‖v‖2

X a lower bound for the coercivity constant of a(·, ·; µ). We then
define the “energy norm” for wk ∈ X , 1≤ k ≤ K,

|||wk|||=
(

b(wk,wk; µ)+∆ t
k

∑
k′=1

as(wk′ ,wk′ ; µ)

)1/2

, 1≤ k ≤ K. (4)

Given an RB approximation for µ ∈ Vm ⊂ D , uk
N(µ), 1 ≤ k ≤ K, we write the

residual as rk
N(v; µ) = f (v; µ)− b(uk

N(µ)− uk−1
N (µ),v; µ)/∆ t− a(uk

N(µ),v; µ) and
denote by εk

N(µ) = supv∈X rk
N(v; µ)/‖v‖X the residual dual norm. The energy norm

of the RB error ek
N(µ) = uk(µ)−uk

N(µ), 1≤ k ≤ K, is bounded by

∆
k
N(µ)≡

(
∆ t

k

∑
k′=1

(εk′
N (µ))2

/
αLB(µ)

)1/2
≥ |||ek

N(µ)|||. (5)

For a proof of (5) and the associated (offine-online) computational procedures for
the dual norm of the residuals and the coercivity lower bound, see [4, 8, 9].

POD/Greedy Sampling In order to determine the parameter domain partitioning
(“h”-refinement) and, associated with each subdomain, individual RB approxima-
tion spaces (“p”-refinement), we invoke the POD/Greedy sampling procedure in-
troduced in [5] (see also [7]). We first describe in this section the standard “p”-type
POD/Greedy procedure applied to the entire parameter domain D . We then consider
in the next section the application of the POD/Greedy procedure in the “hp” context.

Let the function POD({wk ∈X ,1≤ k≤K},R) return R≤K X-orthonormal func-
tions {χ i ∈X ,1≤ i≤R} such that PR = span{χ i,1≤ i≤R} satisfies the optimality
property

PR = arg inf
Y⊂span{wk,1≤k≤K}

(
1
K

K

∑
k=1

inf
w∈Y
‖wk−w‖2

X

)1/2

. (6)

To obtain the set {χ i,1 ≤ i ≤ R}—the first R POD modes of span{w1, . . . ,wK}—
we first solve the eigenvalue problem Cψ i = λ iψ i for (ψ i ∈RK ,λ i ∈R) associated
with the R largest eigenvalues of C, where Ci j = (wi,w j)X/K, 1≤ i, j ≤ K; we then
compute χ i = ∑

K
k=1 ψ i

kwk for 1≤ i≤ R.
Let Ξ ⊂ D be a (typically very rich) finite training sample over D . We initial-

ize the POD/Greedy(R,L) algorithm by choosing (randomly, say) µ∗ ∈ D and set-
ting N = 0, XN = {0}. Then, while N < L, we first compute the projection error
ek

N,proj(µ
∗) = uk(µ∗)−projXN

(uk(µ∗)), 1≤ k≤ K, where projXN
(w) denotes the X-

orthogonal projection of w ∈ X onto XN . Next, we define R (nested) RB spaces as
XN+i≡XN⊕span{POD({ek

N,proj(µ
∗),1≤ k≤K}, i)}, 1≤ i≤R, and set N←N+R.

Finally, the next parameter vector is chosen greedily over Ξ based on the a posteri-
ori error estimator at the final time: µ∗← argmaxµ∈Ξ ∆ K

N (µ).

Parameter Domain Partitioning Since we subdivide only the parameter (and not
the temporal) domain, the “hp” reduced basis framework described in detail for
elliptic problems in [3] also applies to the parabolic context of this paper. The
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Fig. 1 Hierarchical partition-
ing of the parameter domain
based on proximity to greed-
ily chosen parameter anchor
points.

V1 = D

V1

V2

V1

V2 V3

V4

“parabolic” algorithm developed here differs from the “elliptic” algorithm of [3]
in the definition of the error bound and in particular in the choice of the parameter
sampling procedure: care must be taken to properly balance additional POD modes
and additional parameter values in partitioning the parameter domain.

The parameter domain partition is determined in the offline stage. We start from
the original domain D , choose µ∗ = µ∗0 ∈ D , and perform the POD/Greedy(R,L)
algorithm over D with R = R1 ≥ 1 and L = R1 (such that we perform only a single
POD). We denote the resulting (nested) approximation spaces as XN,1, 1≤ N ≤ R1,
and the next parameter vector as µ∗1 . Based on proximity (e.g. Euclidian distance)
to the two parameter anchor points µ∗0 and µ∗1 , we can now divide D into two new
subdomains V0⊂D , V1⊂D , respectively. We now repeat the procedure within each
subdomain for µ∗ = µ∗0 and µ∗ = µ∗1 as the initial parameter vectors, respectively;
note that one of the two “child” subdomains inherits the parameter anchor point, and
thus the associated approximation space, from its “parent.” In Fig. 1, we illustrate
the partitioning algorithm with two levels of refinement; we proceed recursively
until the error bound at the final time is less than ε1

tol (over train samples) over each
subdomain.

We must comment on the tuning parameter R1, which is crucial to the conver-
gence of the “h”-refinement stage of the algorithm. In particular, R1 must be chosen
large enough such that the RB error bound associated with the (R1-dimensional)
RB approximation at the final time is less than ε1

tol in a neighborhood of µ∗. Other-
wise, the procedure would not converge since the tolerance would not be reached.
Note it is not sufficient that the tolerance is satisfied only at µ∗, since then the toler-
ance might not be satisfied at any point arbitrarily close to µ∗, and the partitioning
algorithm might yield arbitrarily small subdomains.

In particular, we shall require that the error bound associated with the RB ap-
proximation of uK(µ∗) based on R1 POD modes is less than ε1

tol/ρ1 with ρ1 > 1.
This requirement ensures that the RB error bound is smaller than ε1

tol in a neigh-
borhood of µ∗; the refinement algorithm will then converge since eventually a finite
subdomain containing µ∗ will be included in this neighborhood. Note that choosing
ρ1 > 1 too small would lead to a large number of subdomains, while large ρ1 will
require more POD modes to be included in the RB space; in the limit ρ1→ ∞, we
would need to include all K POD modes in the RB space in order to achieve a zero
RB error (bound) at µ∗ at the final time—as in the elliptic case, there would thus
perforce be a neighborhood around µ∗ where the RB error bound would be very
small and in particular less than ε1

tol.
It remains to determine R1 automatically. Towards that end, we note that the POD

norm defined in (6) is similar to the energy norm defined in (4); since ek
0,proj(µ

∗) =
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uk(µ∗), the POD error is thus closely related to the associated RB error at µ∗. As
an initial guess, we thus choose R1 such that the POD error at µ∗—realized as
the square root of the sum of the eigenvalues λ i, i = R1 + 1, . . . ,K—is less than
ε1

tol/(ρ1ρ2), where we choose ρ2 ≥ αLB(µ
∗)1/2 because the POD error is a lower

bound for the RB error (and thus RB error bound) divided by αLB(µ
∗)1/2. Next,

we compute the RB error bound associated with the RB approximation of uk(µ∗),
1 ≤ k ≤ K, based on R1 POD modes: if the error bound is smaller than ε1

tol/ρ1,
we conclude that R1 is sufficiently large; if not, we successively set R1 ← R1 + 1,
increase the number of POD modes, and compute a new RB error bound—until the
tolerance is satisfied.

This “h”-refinement results in a total of M subdomains Vm ⊂ D , 1 ≤ m ≤ M.
The next step is “p”-refinement: we expand the approximation spaces associated
with each subdomain Vm, m = 1, . . . ,M, by application of the POD/Greedy(R,L)
sampling procedure (but not initialized; hence N = R1) for R = R2 and L > R1
“specified”; in actual practice, we terminate the POD/Greedy in subdomain m for
L ≡ Nmax,m(ε

2
tol) such that the error bound is less than a second tolerance ε2

tol < ε1
tol

(over the training sample) over the subdomain—the final approximation spaces
XN,m, 1 ≤ N ≤ Nmax,m, 1 ≤ m ≤M, will thus in general have different dimensions.
We typically choose R2 = 1; note that R2 > 1 will lead to improved offline perfor-
mance but worse online performance.

We now turn to the online stage: for every new µ ∈D , the algorithm first deter-
mines which approximation space to invoke, and then computes the RB approxima-
tion and associated RB error bound. Note that since the subdomains are constructed
hierarchically based on proximity to the parameter anchor points associated with
each subdomain, we can determine the subdomain containing µ in an efficient (typ-
ically negligible) O(log2 M)-operations binary search. In particular, once Vm∗ ⊂ D
containing µ is found, we solve (3) for the RB space XN,m∗ , and compute the error
bound (5); the total cost is O(N3 +Q2N2), as described in more detail shortly.

3 A Convection-Diffusion Model Problem

We now apply the “hp” RB method to a convection-diffusion model problem
parametrized by the angle and magnitude of the specified velocity field: let µ =
(µ1,µ2) (hence P = 2 parameters) and define V(µ) = [µ2 cos µ1,µ2 sin µ1]

T; we
shall consider µ ∈ D = [0,π]× [1,10]. The physical domain is Ω = {(x,y) : x2 +
y2 < 2}; the final time is T = 1 and the timestep is ∆ t = 0.05 such that K = 20. The
“exact” field ũe(t,µ) satisfies (ũe(tk; µ)− ũe(tk−1; µ))/∆ t −∇2ũe(tk; µ) +V(µ) ·
∇ũe(tk; µ) = 10, 1≤ k≤ K; we apply homogeneous Dirichlet boundary conditions;
we consider an inhomogeneous initial condition (hence the tilde) ũe(t0) = g, where
g satisfies −∇2g = 10 in Ω .

We now reduce our equation to the desired form (1). We first write ũe =
ue + g such that ue now satisfies homogeneous initial conditions. We then de-
fine b(w,v; µ) =

∫
Ω

wvdΩ , a(w,v; µ) =
∫

Ω
∇w ·∇vdΩ +

∫
Ω

(
V(µ) ·∇w

)
vdΩ , and
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Fig. 2 Example solutions
for the convection-diffusion
problem at t = 0,0.1,0.25
for the parameter value µ =
(π,10).

f (v; µ) = 10
∫

Ω
vdΩ −a(g,v; µ); note that as is µ-independent and in fact we may

choose αLB(µ) = 1. Thus ue satisfies (1) (and homogeneous initial conditions) with
Qa = 3, Qb = 1, and Q f = 4. We next introduce a truth space X ≡ XN (Ω): five
spectral elements each of polynomial order 10. Figure 2 depicts the truth solution
at t = 0,0.1,0.25 for the parameter value µ = (π,10). As the parameters vary, the
solution changes dramatically—a good candidate for “hp” treatment.

We now apply the POD/Greedy procedure to partition D into M parameter sub-
domains; the resulting “hp” RB approximation can then be written in the form (3).
In Fig. 3, we show the partition of the parameter domain for M = 97 and M = 2258
subdomains corresponding to ε1

tol = 5 and ε1
tol = 1, respectively; we choose ρ1 = 2

and ρ2 = 1. We also report, for each of the two partitions shown, the maximum of
the error bound over the training samples over all subdomains as a function of N;
we include the standard “p”-type RB approximation (M = 1) as well. Clearly, with
smaller subdomains we need fewer basis functions for each approximation space.

We summarize in Table 1 for different error tolerances ε2
tol the offline and on-

line performance of the “hp” approach relative to that of the standard “p”-type RB
method. We report the number of truth solves (effectively, parameters visited in the
POD/Greedy); the number of operations for online evaluation of uk

N(µ), 1≤ k≤ K,
and ∆ k

N(µ); and the online storage. The values in the table are based on the theo-
retical operation count and storage requirement. For N basis functions the online
operation count (for our LTI system) is roughly 2N3/3+ 2KN2 operations for the

Fig. 3 Partition of D into
M = 97 and M = 2258 subdo-
mains (εtol = 5 and ε1

tol = 1,
respectively); maximum er-
ror bound as a function of
the RB approximation space
dimension.

µ2
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Table 1 Offline and online effort relative to the standard (“p”-type) RB method for the two parti-
tions M = 97 subdomains (left) and M = 2258 subdomains (right) for different tolerances ε2

tol.

Tolerance, ε2
tol 10−2 10−3 10−4

Truth solves 39.2 40.7 40.6
Online uk

N(µ) 0.20 0.22 0.21
Online ∆ k

N(µ) 0.25 0.28 0.28
Online storage 16.7 17.7 17.5

Tolerance, ε2
tol 10−2 10−3 10−4

Truth solves 597 660 659
Online uk

N(µ) 0.08 0.09 0.09
Online ∆ k

N(µ) 0.11 0.13 0.14
Online storage 166 200 197
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RB solution (and, in pratice, output), and O(Q2N2 +KN2) operations for the RB
error bound (see [4, 8] for details); we neglect the O(QN2) cost of forming the RB
system and the O(log2 M) cost of finding the correct subdomain. For each space
(subdomain) the storage requirement is O(Q2N2).

The new method is admittedly more expensive in terms of the offline cost—the
number of truth solves. However, significant computational savings are achieved
in the online computation of the RB solution and RB error bound; note that for
modest Q the costs of the RB solution and RB error bound are comparable. For
real-time or many-query applications the online cost is often our main concern and
the “hp” approach is thus very attractive. Note however, that “p”-type refinement
plays a crucial role in controlling the offline cost, in particular in higher parameter
dimensions.

Future work on the “hp” approach will focus on quadratically nonlinear prob-
lems: in these cases the online operation count is O(N4) and thus computational
performance can greatly benefit from the (further) dimension reduction afforded by
the “hp” approach.
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